
METHODS OF PRIMALITY TESTING

ZIXING WANG∗

Abstract. Primality testing plays an increasingly important role as the
introduction of public-key cryptography. In this article, I listed some
historically typical algorithms for primality testing and evaluated their
pros and cons, including trial division algorithm, Fermat primality test,
Lucas primality test, Solovay–Strassen primality test and AKS primality
test.

1. Introduction

The interest in primality testing has grown rapidly in the past two decades
since the introduction of public-key cryptography. The security of this type
of cryptography primarily relies on the difficulty involved in factoring very
large numbers. Therefore, the mathematics and computer science commu-
nities have begun to address the problem of primality testing with increased
vigor. There are many algorithms for testing primality, and in this article I
will list a few typical algorithms.

2. Algorithms in primality testing

2.1. Trial division algorithm.

Theorem 2.1 (Trial division algorithm). Let p > 1 be an integer. Then p
has no prime divisor less than or equal to √

p if and only if p is prime.

Trial division is the most laborious but easiest to understand of the integer
factorization algorithms. It takes O(

√
n) which is impractical for large n,

but it serves as a useful base case for more sophisticated recursive methods
that we will consider. Trial division was first described by Fibonacci in his
book Liber Abaci (1202).

2.2. Fermat primality test.
Fermat’s Little Theorem is first appeared in a letter written by Fermat

in 1640. It was stated without proof, though it is speculated that Fermat’s
proof relied on the binomial theorem. Nearly one hundred years after Fermat
stated this theorem, Euler published the first proof in Proceedings of the St.
Petersburg Academy in 1736.

2010 Mathematics Subject Classification. Primary 11A41.
Key words and phrases. prime number, primality test, algorithm.
* Corresponding author.

1



2 Z.X. WANG

Theorem 2.2 (Fermat’s Little Theorem). Let p be a prime and a any
integer with (a, p) = 1. Then

ap−1 ≡ 1 (mod p)

Proof. We begin by listing the p− 1 distinct nonzero elements of Zp :
1, 2, 3, . . . , p− 2, p− 1 (2.1)

By multiplying each member of (??) by some fixed nonzero a ∈ Zp we obtain
a new list:

1a, 2a, 3a, . . . , (p− 2)a, (p− 1)a (2.2)
Since Zp is closed under multiplication, each member of (??) is in Zp. More-
over, each member of (??) is distinct. Since products in Zp are commutative
and associative, we may form the product of the elements in each list and
obtain the congruence

(p− 1)! · ap−1 ≡ (p− 1)! (mod p)

Finally, multiplication by the inverse of (p− 1)! yields the desired result.
□

We can use the contrapositive of Fermat’s Little Theorem to test not for
primality, but instead for compositeness. Letting n > 2 be odd, if we can
find a base a relatively prime to n for which an−1 ̸= 1 (mod n), then n is
necessarily composite.

The algorithm can be written as follows:
Inputs:
n : a value to test for primality, n > 3;
k: a parameter that determines the number of times to test for primality
Output:
Repeat k times:
Pick a randomly in the range [2, n−2]. If an−1 ̸≡ 1 (mod n), then return

composite.
If composite is never returned: return probably prime.
Complexity:
Using fast algorithms for modular exponentiation, the running time of

this algorithm is O
(
k log3 n

)
, where k is the number of different values of a

we test.

Example 2.3. Consider n = 5461. Choosing the base a = 680 at random,
we find that (a, n) = 1. Now we compute

6805460 ≡ 1162 ̸≡ 1 (mod 5461)

which shows that n is composite. In fact, n = 43 · 127.
Notice that if we had chosen the base a = 16, we would have again had

(a, n) = 1, but we would have computed

165460 ≡ 1 (mod 5461)



METHODS OF PRIMALITY TESTING 3

and we would not have been able to make a conclusive decision regarding
the compositeness of n.

Unfortunately, our example outlines the fact that there are composites
n which can satisfy Fermat’s Little Theorem for a particular base a with
(a, n) = 1. This leads us to the following definition.

Definition 2.4. Let a and n be integers with (a, n) = 1. Then n is a
pseudoprime to the base a if n is composite, yet we still have an−1 ≡ 1
(mod n).

The existence of pseudoprimes means that the converse of Fermat’s Little
Theorem does not hold true. One would hope that for a particular base
a, there are only finitely many pseudoprimes. This is not the case. Actu-
ally, there are infinitely many pseudoprimes to the base 2. The base 2 is
not the only base troubled by pseudoprimes; each base has infinitely many
pseudoprimes associated to it. Worse yet, there are composites which are
pseudoprimes to every possible base. These troublesome composites were
studied by Carmichael and are named for him.

Definition 2.5. Let a and n be integers. Then n is a Carmichael number
if n is composite and an−1 ≡ 1 (mod n) for all a with (a, n) = 1.

In 1912 , Carmichael conjectured that there are infinitely many Carmichael
numbers. Eighty years later, Alford, Granville and Pomerance proved it.
Though Carmichael numbers appear less frequently than primes, their infini-
tude still provides an infinite amount of trouble in testing for compositeness
using Fermat’s Little Theorem.

2.3. Lucas primality test. We saw that the converse of Fermat’s Little
Theorem does not hold true. However, Lucas showed in a work published in
1876 that an additional condition can be placed on the converse of Fermat’s
Little Theorem so that it does hold true.

Theorem 2.6 (Lucas’ converse of Fermat’s Little Theorem). Let n be a
positive integer. If an−1 ≡ 1 (mod n) and there is an integer a for every
prime divisor pi of n− 1 satisfies a(n−1)/pi ̸= 1 (mod n), then n is prime.

Proof. We show that n is prime by verifying that ϕ(n) = n − 1. By the
previous theorem, our first hypothesis means that ordn(a) | n − 1. Now
suppose ordn(a) ̸= n − 1, then n − 1 = k · ordn(a) for some integer k > 1.
Let pi be any prime divisor of k, then

a(n−1)/pi = ak·ordn(a)/pi =
(
aordn(a)

)k/pi
≡ 1 (mod n)

which contradicts our second hypothesis. Thus, ordn(a) = n − 1. Now by
definition, ordn(a) ≤ ϕ(n) and ϕ(n) ≤ n− 1, and since ordn(a) = n− 1, this
means that ϕ(n) = n− 1 and therefore n is prime. □



4 Z.X. WANG

This theorem allows us to derive a test which is stronger than the test
derived from Fermat’s Little Theorem since it is capable of detecting both
primes and composites. This new test is well-suited for application to n for
which n− 1 is easy to factor. The following example illustrates this.

Example 2.7. Consider n = 65537. The prime factorization of n − 1 is
65536 = 216. Choosing the base a = 44188 at random, we find that (a, n) =
1. We then compute

4418865536 ≡ 1 (mod 65537)

which gives evidence that n is prime. Continuing the test, we now compute
4418865536/2 = 4418832768 ≡ −1 ̸≡ 1 (mod 65537)

and then by Lucas’ converse of Fermat’s Little Theorem, n is prime.

2.4. Solovay–Strassen primality test. The Solovay–Strassen primality
test, developed by Robert M. Solovay and Volker Strassen in 1977, is a
probabilistic test to determine if a number is composite or probably prime.
The idea behind the test was discovered by M. M. Artjuhov in 1967. This
test has been largely superseded by the Baillie-PSW primality test and the
Miller–Rabin primality test, but has great historical importance in showing
the practical feasibility of the RSA cryptosystem. The Solovay–Strassen test
is essentially an Euler–Jacobi pseudoprime test.

Theorem 2.8 (Euler–Jacobi method). For any prime number p and any
integer a,

a(p−1)/2 ≡
(
a

p

)
(mod p)

This contrasts with the Fermat primality test, for which the proportion
of witnesses may be much smaller. Therefore, there are no odd composite n
without many witnesses, unlike the case of Carmichael numbers for Fermat’s
test.

Using fast algorithms for modular exponentiation, the running time of
this algorithm is O

(
k log3 n

)
, where k is the number of different values of a

we test.

2.5. Miller–Rabin primality test. The Miller–Rabin primality test is a
primality test: an algorithm which determines whether a given number is
likely to be prime, similar to the Fermat primality test and the Solovay–
Strassen primality test. Gary L. Miller discovered it in 1976; Miller’s ver-
sion of the test is deterministic, but its correctness relies on the unproven
extended Riemann hypothesis. Michael O. Rabin modified it to obtain an
unconditional probabilistic algorithm in 1980.

Theorem 2.9 (Miller–Rabin primality test). Suppose n = 2sd + 1, if we
can find an a such that ad ̸≡ 1 (mod n) and

a2
rd ̸≡ −1 (mod n)



METHODS OF PRIMALITY TESTING 5

for all 0 ≤ r ≤ s− 1, then n is not prime.

Proof. Suppose n be prime, and n > 2. It follows that n− 1 is even and we
can write it as 2sd, where s and d are positive integers and d is odd. For
each a in Zn, either

ad ≡ 1 (mod n)

or
a2

r·d ≡ −1 (mod n)

for some 0 ≤ r ≤ s− 1. To show that one of these must be true, we can use
Fermat’s little theorem, that for a prime number n : an−1 ≡ 1 (mod n). If
we keep taking square roots of an−1, we will get either 1 or −1. If we get −1
then the second equality holds and it is done. If we never get −1, then when
we have taken out every power of 2, we are left with the first equality. □

We call a a witness for the compositeness of n. Otherwise a is called a
strong liar, and n is a strong probable prime to base a. The term ”strong
liar” refers to the case where n is composite but nevertheless the equations
hold as they would for a prime.

Using repeated squaring, the running time of this algorithm is O
(
k log3 n

)
,

where k is the number of different values of a we test.
The error made by the primality test is measured by the probability for

a composite number to be declared probably prime. The more bases a
are tried, the better the accuracy of the test. It can be shown that if n
is composite, then at most 1

4 of the bases a are strong liars for n. As a
consequence, if n is composite then running k iterations of the Miller-Rabin
test will declare n probably prime with a probability at most 4−k.

2.6. AKS primality test. The AKS primality test is a deterministic primality-
proving algorithm created and published by Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Tech-
nology Kanpur, on August 6, 2002, in an article titled ”PRIMES is in P”.

Lemma 2.10. Let n > 1 be an integer and a any integer with (a, n) = 1.
Then n is prime if and only if

(x+ a)n ≡ xn + a (mod n)

Proof. First note that
(x+ a)n − (xn + a) = C0

na
n + C1

na
n−1x+ · · ·+ Cn−1

n axn−1 + Cn
nx

n − xn − a

= an − a+
∑

0<i<n

Ci
na

n−ixi

Suppose n is prime. Then each binomial coefficient in the sum is zero, so
this case reduces to Fermat’s Little Theorem.

Conversely, suppose n is composite. Then n has a prime divisor q, so let
qk∥n. We can prove that the coefficient Cq

nan−q of xq in (x+a)q is not divis-
ible by n and therefore, doing a term-by-term comparison, the congruence



6 Z.X. WANG

cannot hold. Since (a, n) = 1, then (a, q) = 1 and consequently
(
an−q, qk

)
=

1. □
While the lemma constitutes a primality test in itself, verifying it takes

exponential time: the brute force approach would require the expansion
of the (x + a)n polynomial and a reduction modn of the resulting n + 1
coefficients.

The congruence is an equality in the polynomial ring Zn[x]. Evaluating
in a quotient ring of Zn[x] creates an upper bound for the degree of the
polynomials involved. The AKS evaluates the equality in Zn[x]/ (x

r − 1) ,
making the computational complexity dependent on the size of r. For clarity,
this is expressed as the congruence

(x+ a)n ≡ xn + a (mod xr − 1, n)

Note that all primes satisfy this relation. This congruence can be checked
in polynomial time when r is polynomial to the digits of n.

The AKS algorithm evaluates this congruence for a large set of a values,
whose size is polynomial to the digits of n. The proof of validity of the AKS
algorithm shows that one can find an r and a set of a values with the above
properties such that if the congruences hold then n is a power of a prime.

The algorithm can be written as follows:
Input:
Integer n > 1.
Output:
1. If n = ab for a ∈ N and b > 1, return composite.
2. Find the smallest r such that ordr(n) > (log2 n)

2.
3. If 1 < (a, n) < n for some a ≤ r, return composite.
4. If n ≤ r, return prime.
5. For a = 1 to ⌊

√
ϕ(r) log2 n⌋ do

if (x+ a)n ̸= xn + a (mod xr − 1, n), return composite;
6. Return prime.
Complexity:
In the first version of the paper, the authors proved the asymptotic time

complexity of the algorithm to be Õ
(
log12 n

)
. However, this upper bound

was rather loose; a widely-held conjecture about the distribution of the
Sophie Germain primes would, if true, immediately cut the worst case down
to Õ

(
log6 n

)
.

While the algorithm is of immense theoretical importance, it is not used
in practice, for it is more complex, time-consuming and space-consuming
than other algorithms like Miller–Rabin primality test.



METHODS OF PRIMALITY TESTING 7

References
[1] Jones, Gareth A, and J. Mary Jones. Elementary Number Theory. London: Springer,

1998.
[2] M.O. Rabin, Probablistic algorithm for testing primality, Journal of Number Theory

12 (1980), 128–138.
[3] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Mathematics160, 781-

793, 2004.

School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan
Road, 200240 Shanghai, China

Email address: nbwzx@126.com


